Controlling and validating methods to control for response biases in self-report educational data.

(work in progress)

Marek Muszyński
Institute of Sociology, Jagiellonian University
1. Presentation aim

- Present methods to control for response biases in self-descriptive data in educational studies.
- Comment on response biases risk in large-scale assessment studies (ILSAs) e.g. PIAAC, PISA, etc.
2. Potential measurement error sources.

Error sources

- Respondent
- Interviewer
- Research tool
- ...

Response biases

- Careless/insufficient effort/random responding
- Response styles
- Response sets
2.1 What are response biases?

- systematical tendency to answer questions on other basis than they content (Paulhus, 1991)
- the research dates back at least to 1930s (e.g. Seashore, 1939) where „work methods“ were first described and studied
- „control” limited to ordinary instructions and demonstrations is incomplete, and that other unnoticed factors operate to modify the work method actually adopted.” (Seashore, 1939)
- „Work methods may be temporary sets or may be habitual techniques of performance.” (Cronbach, 1946)
- related or unrelated to item content (Nichols, Greene & Schmolck, 1989)
- most often: **interaction of respondent’s traits and research context** (Baumgartner & Steenkamp, 2001; Mors, Kieruj & Vermunt, 2014; Schwarz, 1999; Weijters, 2006; Weijters et al., 2010; Ziegler & Buehner, 2009; Ziegler, 2015)
2.2 Response biases mechanisms - theoretical framework

- cognitive model of survey response (Tourangeau, Rips and Rasinski, 2000)
 - Comprehending
 - Retrieving
 - Integrating
 - Selecting/reporting

- interpretive visual heuristics (Tourangeau et al., 2004)

- response strategies (e.g. Silber et al., 2018)

 - hard
 - weak

- both frameworks are underinvestigated, but have gained some empirical confirmation (Gummer et al., 2018; Rossmann et al., 2017)
2.3 What response biases do we „know”?

- careless responding, inattentive responding, random responding (e.g. Meade i Craig, 2012)

- response styles (e.g. Weijters, 2006)

- response sets (e.g. Paulhus, 2002)
2.4 Response biases review
2.5 Careless responding

- careless responding, inattentive responding, insufficient effort responding, random responding (Curran, 2016; Fronczyk, 2014; Goldsmith i Clark, 2005; Meade i Craig, 2012; Meyvis, Oppenheimer i Davidenko, 2009; Osborne i Blanchard, 2010)

- only few % of respondents? (Johnson, 2005) or up to 50%? (Meyvis et al., 2009)

- limited knowledge on mechanisms of this effect (Curran, 2016; Meade & Craig, 2012)

- special focus in web surveys (Johnson, 2005)
 - accountability
 - anonimity
 - bots (e.g. MTurk)
2.6 Response biases review-response styles

Please indicate how much you agree or disagree with the following statements:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualtrics is awesome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chocolate is the best</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen is important</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crime doesn’t pay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I like my friends</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Getting bitten by a shark would be fun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I dislike my friends</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.7 Response styles

- overusing of a given response category (Khorramdel & van Davier, 2014; Mors, Kieruj & Vermunt, 2014)
- stable in time? (Jackson & Messick, 1958; Weijters, 2006)
- many response styles known:
 - extreme response style (ERS)
 - middle response style (MRS)
 - acquiescence response style (ARS)
 - disacquiescence response style (DARS)
- (review: Van Vaerenbergh & Thomas, 2013)
2.8 Socially desirable responding
2.9 Socially desirable responding (SDR)-definitions

- "Social desirability is the tendency of some respondents to report an answer in a way they deem to be more socially acceptable than would be their "true" answer. " (Callegaro, 2008)
- "Tendency to give (overly) positive self-descriptions” (Paulhus, 2002)
- "Participants’ tendency to describe themselves in favorable terms by adhering to socioculturally sanctioned norms” (De Jong et al., 2010)
- "Obtain approval by responding in a culturally appropriate and acceptable manner” (Crowne & Marlowe, 1960)
- "general positive bias of self-perception” (Wojciszke, 2010)
- "evolutionary mechanism” (Hogan, 2005)
- faking (Ziegler, McCann & Roberts, 2011)
- forensic psychology, psychopathology (Hildebrand et al., 2018)
- sensitive, intrusive, loaded questions (Krumpal, 2013; Tourangeau & Yan, 2007)
3.1 Bias example 1

- PISA 2012 (OECD, 2014; Pokropek, 2014)
- „Are you familiar with this mathematical concept”?

<table>
<thead>
<tr>
<th>Concept</th>
<th>Know it well, understand the concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjunctive scaling*</td>
<td>12,8%</td>
</tr>
<tr>
<td>Proper number*</td>
<td>50,4%</td>
</tr>
<tr>
<td>Declarative fraction*</td>
<td>29,6%</td>
</tr>
<tr>
<td>Polygon</td>
<td>88,9%</td>
</tr>
</tbody>
</table>
3.2 Bias example 2

In the PIAAC study around 20% of the participants that declared computer-proficiency refused to perform a simple computer-proficiency test. Another 6,5% failed this very simple test. These results point to overclaiming in the self-report data (Burski et al., 2013, PIAAC study, Polish sample)
3.3. Bias example 3

- students were asked about their predictions for their performance on a forthcoming final exam
- no one expected to score below the average (Taylor & Brown, 1988)
- what percent of Americans think their driving skills are better than average?
 - 88% (Svenson, 1981)
- what percent of university teachers think they possess better than average teaching skills?
 - 94% (Cross, 1997)
3.4 Bias example 4

• „In a survey conducted by experts from the Faculty of Physics of the University of Poznań about 80-90% of the respondents declared excellent or satisfying sight. Only 20% passed an objective measurement test.”

(http://www.biznes.newseria.pl/news/dobra-kondycja-rynku,p757362557)
3.5 Bias-comment

- general positive bias of self-perception/socially desirable responding also present in:
 - low-stakes research
 - no incentives
 - non-intrusive questions

(http://www.biznes.newseria.pl/news/dobra-kondycja-rynku,p757362557)
4.1 Careless responding- sources

- low motivation
- low ability (e.g. cognitive skills, literacy skills)
- research procedure (e.g. cognitive burden, difficulty, length)
- (social) context
 (Meade & Craig, 2012)
- A critical problem in web-based research?
 (Fleischer et al., 2015; Gummer et al., 2018; Johnson, 2005)
 - anonymity
 - accountability
 - ease of responding, lower seriousness
 - bots
4.2 Response styles- sources

- low motivation
- low ability (e.g. cognitive skills, literacy skills)
- research procedure (e.g. cognitive burden, difficulty, length)
- (social) context
- personality
- culture

(He & van de Vijver, 2013, 2015; Van Vaerenbergh i Thomas, 2013)
4.3 Biases of self-perception - mechanisms and sources

- intentional
 - faking
 - avoiding answer
 - impression management
- (Krumpal, 2013; Paulhus, 2002; 2011; Ziegler, 2011)
- unintentional
 - universal cognitive biases (better than average, unrealistic optimism, overconfidence effects; Burrus et al., 2011; Wojciszke, 2010)
 - protection of self-esteem; biased self-perception; low self-knowledge; lack of insight (Alicke, 2011; Ellison et al., 2006; Snyder, 1974; Zaborowski, 1989; Wojciszke, 2010)
 - psychopathology (Crowne & Marlowe, 1960)
- interaction of person and situation (Ziegler, 2015)
5.1 Response biases consequences

- validity threat (Holden, 2007)
- systematic measurement error (CIV; *spurious variance*; Schmidt, Le & Ilies, 2003; Ziegler et al., 2011)
- higher nonresponse, missing data
- distorted means and variances, „theta shift”
- skewed distributions, misrepresented factorial structure
- distorted internal consistency
- changed multivariate correlations
- obscured cultural differences

5.2 Response biases consequences

- protocol invalidity
- infringement of measurement assumption
- inferential errors
- uninterpretable data

(Johnson, 2005; Kurtz, 2001; Maniaci & Rogge, 2014)
6. Call for research-research rationale

Need of:

- a method:
 - cost-effective,
 - easy-to-use,
 - valid,
 - *a posteriori (post hoc)*,
 - flexible: different scales, modes, contexts, populations

- more comparison, validation and metanalytic studies

- problem of response biases in low-stakes research

- very few research out of the „trinity“ context: faking, sensitive questions, forensics/diagnostics (seldom researched topic in educational studies and self-assessment of skills)

- methods used in the above fields most often not applicable in large-scale surveys (Ziegler et al., 2011)

- many response patterns seem aberrant- but are they really are?
7.1 Overclaiming technique

- Dated back at least to 1970s and linguistics-word recognition research (Zimmerman et al., 1977)
- In social sciences (Paulhus et al., 2003): based on rating familiarity with a list of objects, among which we intertwine **reals** and **foils**

Format of the Over-Claiming Questionnaire (OCQ)

Using the following scale as a guideline, write a number from 0 to 6 beside each item to indicate how familiar you are with it.

<table>
<thead>
<tr>
<th>Never heard of it</th>
<th>Very familiar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Physical Sciences

- Manhattan Project
- chlorine
- alloy
- ultra-lipid
- nebula
- asteroid
- atomic number
- plate tectonics
- centripetal force
- particle accelerator
- nuclear fusion
- hydroponics
- photon
- plates of parallax
- satellite

Note. Of the 15 items above, the following 3 are foils: chlorine, ultra-lipid, and plates of parallax. Other topic categories include literature, art, history, social science, language, contemporary culture, and consumer products.
7.2 Research

- PISA 2012 data (OECD, 2014)
- familiarity with mathematical concepts (13 items) + questionnaire
- overclaim measure (3 items—"foils") (Paulhus et al., 2003; Vonkova et al., 2018)
- 2881 respondents (missing data removed)

<table>
<thead>
<tr>
<th>Item</th>
<th>Thinking about mathematical concepts: how familiar are you with the following terms?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST62Q01</td>
<td>a) Exponential Function</td>
</tr>
<tr>
<td>ST62Q02</td>
<td>b) Divisor</td>
</tr>
<tr>
<td>ST62Q03</td>
<td>c) Quadratic Function</td>
</tr>
<tr>
<td>ST62Q06</td>
<td>e) Linear Equation</td>
</tr>
<tr>
<td>ST62Q07</td>
<td>f) Vectors</td>
</tr>
<tr>
<td>ST62Q08</td>
<td>g) Complex Number</td>
</tr>
<tr>
<td>ST62Q09</td>
<td>h) Rational Number</td>
</tr>
<tr>
<td>ST62Q10</td>
<td>i) Radicals</td>
</tr>
<tr>
<td>ST62Q12</td>
<td>k) Polygon</td>
</tr>
<tr>
<td>ST62Q15</td>
<td>m) Congruent Figure</td>
</tr>
<tr>
<td>ST62Q16</td>
<td>n) Cosine</td>
</tr>
<tr>
<td>ST62Q17</td>
<td>o) Arithmetic Mean</td>
</tr>
<tr>
<td>ST62Q19</td>
<td>p) Probability</td>
</tr>
</tbody>
</table>

Feils used for signal detection adjustment

ST62Q04 | d) <Proper Number>
ST62Q11 | j) <Subjunctive Scaling>
ST62Q13 | l) <Declarative Fraction>
7.3 Research

- Is overclaiming technique a valid measure of controlling for response biases in low-stakes data? (very mixed results in other fields: Paulhus, 2011)
- What other response biases are present in this data? (careless responding?; Kam et al., 2015)
- How to control them? (Meade & Craig, 2012)
- What contextual variables are related to response biases?

- Prediction: OCT will act as a classical suppressor for the math familiarity-math ability relation
- Prediction: OCT relations with math ability will be mediated by careless/inattentive responding
- Prediction: response biases presence in the self-report will correlate negatively with math ability
- Prediction: male will yield lower data quality; low escs will yield lower data quality
6.2 Research

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th></th>
<th>Model 2</th>
<th></th>
<th>Model 3</th>
<th></th>
<th>Model 4</th>
<th></th>
<th>Model 5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>p>z</td>
<td>B</td>
<td>p>z</td>
<td>B</td>
<td>p>z</td>
<td>B</td>
<td>p>z</td>
<td>B</td>
<td>p>z</td>
</tr>
<tr>
<td>math familiarity</td>
<td>38,8</td>
<td>***</td>
<td>-</td>
<td>-</td>
<td>42,41</td>
<td>***</td>
<td>40,67</td>
<td>***</td>
<td>36,29</td>
<td>***</td>
</tr>
<tr>
<td>overclaiming</td>
<td>-</td>
<td>-</td>
<td>-3,21</td>
<td>*</td>
<td>-13,80</td>
<td>***</td>
<td>-9,67</td>
<td>***</td>
<td>-6,82</td>
<td>***</td>
</tr>
<tr>
<td>within-person SD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,68</td>
<td>***</td>
<td>13,12</td>
<td>***</td>
</tr>
<tr>
<td>Mahalanobis distance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-11,07</td>
<td>***</td>
</tr>
<tr>
<td>R2 Level1</td>
<td>0,26</td>
<td>0,01</td>
<td>0,30</td>
<td>0,30</td>
<td>0,30</td>
<td>0,30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2 Level2</td>
<td>0,36</td>
<td>0,01</td>
<td>0,44</td>
<td>0,43</td>
<td>0,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Multilevel regression: plausible values from matb ability as dependent variable
- Math familiarity- pv from GRM model
- Overclaim- pv from GRM model (uirt, Kondratek, 2016)
- Within-person standard deviation (egen rowsd command)
- Mahalanobis distance (R “careless” package; Yentes & Wilhelm, 2018)
- School- and participant-level weights used
- Snijders&Bosker (pseudo)R2 used (mltrsq, Stata 14)
6.3 Research-path analysis

<table>
<thead>
<tr>
<th></th>
<th>Direct effects</th>
<th>Indirect effects</th>
<th>Total effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>p;z</td>
<td>B</td>
</tr>
<tr>
<td>math ability <-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>within_sd</td>
<td>15.05</td>
<td>***</td>
<td>-</td>
</tr>
<tr>
<td>Mahalanobis distance</td>
<td>-12.84</td>
<td>***</td>
<td>-</td>
</tr>
<tr>
<td>math familiarity</td>
<td>41.17</td>
<td>***</td>
<td>6.72</td>
</tr>
<tr>
<td>overclaiming</td>
<td>-10.63</td>
<td>***</td>
<td>-7.90</td>
</tr>
<tr>
<td>Mahalanobis distance <-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>math familiarity</td>
<td>-0.29</td>
<td>***</td>
<td>-</td>
</tr>
<tr>
<td>overclaiming</td>
<td>0</td>
<td>ns</td>
<td>-</td>
</tr>
<tr>
<td>within_sd <-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>math familiarity</td>
<td>0.20</td>
<td>***</td>
<td>-</td>
</tr>
<tr>
<td>overclaiming</td>
<td>-0.53</td>
<td>***</td>
<td>-</td>
</tr>
</tbody>
</table>
6.4 Research-path analysis

| | Gender | p>|z| | ESCS | p>|z| |
|------------------------------|--------|-----|-----|------|-----|
| math familiarity | -0.19 | *** | 0.29 | *** |
| overclaiming | 0.15 | *** | -0.04| * |
| within_sd | -0.27 | *** | 0.10 | *** |
| Mahalanobis distance | 0.21 | *** | -0.08| *** |
7. Brief sum up

- overclaiming technique acts as classical suppression in self-report math familiarity and math ability relation
- overclaiming relations with math ability is mediated through careless responding indices
- (a lot of overclaimers are just straightliners!)
- **male:** higher overclaiming, lower data quality
- socio-economic status: slightly higher data quality for higher status participants
8. Discussion
Thank you for your attention!
marek.a.muszynski@gmail.com

Marek Muszyński
Institute of Sociology, Jagiellonian University