Effects of Field Interviewer Geßßtaokin甲atafrom a Global Household Survey on Tobacco Use

Jeremy Morton
Luhua Zhao
Krishna Palipudi

Global Tobacco Control Branch, Office on Smoking and Health U.S. Centers for Disease Control and Prevention

Second International Conference on Survey Methods in Multinat Multiregional and Multicultural Cabiterts (

26 July 2016

Overview

- Background
- Objective
- Methods
- Results
- Summary of Findings
- Implications

Background: Interviewer Effects

- "Interviewer Effects in Public Health Surveys" (Da al. 2010*)
- "Interviewer Er'rorariancin estimates due to difference data collected from different interviewers
- "Interviewer Effe"ctsseasurement error attributable to a interviewer characteristic such as race or gender
- Interviewer effects especially occur in public health su measuring topics prone to social desirability
- Little evidence to suggest interviexundent matching improves validity
*DavisR. E. et al. "Interviewer Effects in Public Healthesltthentsication Resear(2010): 14-26. PMC

Background: Underreporting Smoking

- Widespread belief thvemen from certaégions underreport smokibghaviors because of social desirability
- Smokingy femalescionsidered socially undesirable in parts Asią Middléeast
- Limited evidence
- South Korea Health and Nutrition Examination Survey use Cotinine validation
- 58.9 offemales and 12.1% of males misclemerifuelves as norsmokers*
- Biomarkersould be gold standard to validatereplfrted tobacco use and measortential misreporting
- Usefulness maylibetted because of cost/burden
*JungChoik. et al. "Hidden female smokers in Asia: a cefnsptnésemtedwith cotininererifiectmoking prevalence; rates in representative nationafroatanAsian populationflealth Education Reseazezonon): 14-26. PMC

Study Objective

- Examine relationship between interviewer gende selfreportedmokingtatus ia global survey on tobacco use
- Hypotheses:
- Femalœspondents will report significantly different prevalenaffsmoking to female interviewers than to ma interviewers
- No differences in prevalence of smoking among male respondents, by interviewer gender

Methods: Global Adult Tobacco Survey

- Global surveillance systemcioitoring adult tobacco us and tracking key tobacco control indicators
- Smokingsmokeless, cessation, exposure to secondhand si economics, media, knowledge \& attitudes
- Nationallyepresentativepierson househslarvey of persons 15 years of agler
- Standarquestionnaire, sample design, data collectior managemerprocedures
- In-country partners/agencies implement GATS
- CDC/WHO/partnerrsvideonsultation to ensure standardization/quality

Methods: Global Adult Tobacco Survey

- Interviewer administered using haredtmepduters
- GATS standard design: roster all eligible household m and select 1 to complete the tobacco survey
- Optional design feature: Gender Randomization
- Randomly prdesignate sampled households as male or fema
- Roster only eligible males or females
- Primarily used for cultural reasons, where interspendent gender matching is required

Methods: Analysis

- Included 4 Asian countries where gender matching was used and data were available on field interviewer (FI) ge
- China 2010 (East Asia): $\mathrm{n}=13,354$; response rate (RR)=96.0\%
- Kazakhstan 2014 (Central Asia): n=4,425; RR=96.7\%
- Malaysia011 (Southe ásilà: $n=4,250$; RR=85.3\%
- Vietnam 2010 (Southeast Asia): n=9,925; RR=92.7\%
- Examined results of smoking prevalence among males/f by FI gender
- Among females: analyzed by age, urbanicity, education
- Weighted prevalence estimates were reported
- Z-test with twbailed hypothesis (significance p < .05)

Results

Current Toba@uookingrevalence Amolmigles15 yearmid, by Interviewer Gendrats 202014

	All males (regardlesf interviewer gender)	Intervieweßender		Z-score, ypalue
		Male	Female	
China 2010	52.9\%	53.9\%	51.9\%	$\mathrm{Z}=0.87, \mathrm{p}=.38$
Kazakhstan 20	42.4\%	40.2\%	44.0\%	$\mathrm{Z}=1.25, \mathrm{p}=.21$
Malaysia 2011	44.1\%	46.8\%	40.6\%	$\mathrm{Z}=1.92, \mathrm{p}=.05$
Vietnam 2010	47.4\%	46.2\%	49.6\%	$\mathrm{Z}=1.65, \mathrm{p}=.10$

Results

Current Toba@ookingrevalence Amorfigmales15 years oldy Interviewer GenderATS 202014

	All Females (regardless interviewer gender)	Intervieweßender		Zscore, value
		Male	Female	
China 2010	2.4\%	1.8\%	3.0\%	$\mathrm{Z}=1.90 \mathrm{p}=.06$
Kazakhstan 20	4.5\%	1.9\%	6.0\%	$\mathrm{Z}=-4.03^{*} \mathrm{p}<.001$
Malaysia 2011	1.1\%	1.6\%	0.4\%	$\mathrm{Z}=2.69 * \mathrm{p}<.01$
Vietnam 2010	1.4\%	1.5\%	1.3\%	$\mathrm{Z}=0.43 \mathrm{p}=.67$

Current Smoking Prevalence Among Females, by FI Geı $:::::::$ Respondent's Demographic Charaetethistias

	IntervieweGender		Zscore, pralue
	Male	Female	
Age			
1824	0.5\%	1.2\%	$\mathrm{Z}=0.79 \mathrm{p}=.43$
2544	1.5\%	1.5\%	$\mathrm{Z}=0.00 \mathrm{p}=1.00$
4564	1.8\%	4.2\%	$\mathrm{Z}=2.36{ }^{*}, \mathrm{p}<.05$
65+	5.9\%	7.5\%	$\mathrm{Z}=0.76 \mathrm{p}=.45$
Residence			
Urban	2.4\%	2.8\%	$\mathrm{Z}=0.43 \mathrm{p}=.67$
Rural	1.5\%	3.1\%	$\mathrm{Z}=1.84 \mathrm{p}=.07$
Education			
Primary or less	2.8\%	5.7\%	$\mathrm{Z}=2.42^{*}, \mathrm{p}<.05$
Secondary school	1.1\%	2.1\%	$\mathrm{Z}=1.24 \mathrm{p}=.21$
High school	1.7\%	1.2\%	$\mathrm{Z}=0.35 \mathrm{p}=.73$
Colleger above	0.9\%	1.5\%	$\mathrm{Z}=0.53 \mathrm{p}=.60$

Current Smoking Prevalence Among Females, by FI Geı $:::::::$: Respondent's Demogr@ttaicacteristicKazakhstan

	IntervieweGender		Z-score, pralue
	Male	Female	
Age			
1824	1.6\%	4.2\%	$Z=1.48 p=.14$
2544	4.0\%	9.3\%	$\mathrm{Z}=2.80$ *, p<. 01
4564	0.1\%	4.9\%	$\mathrm{Z}=2.98{ }^{*}, \mathrm{p}<.01$
65+	0.0\%	3.1\%	$\mathrm{Z}=2.12^{*}, \mathrm{p}<.05$
Residence			
Urban	1.5\%	7.9\%	$\mathrm{Z}=4.44^{*}, \mathrm{p}<.001$
Rural	2.1\%	2.0\%	$\mathrm{Z}=0.09 \mathrm{p}=.93$
Education			
Primary or less	0.0\%	0.7\%	$\mathrm{Z}=0.96 \mathrm{p}=.34$
Secondary general	3.9\%	8.2\%	$\mathrm{Z}=1.55 \mathrm{p}=.12$
Secondatechnical	0.7\%	4.8\%	$\mathrm{Z}=3.40$ *, p < 001
Colleger above	1.4\%	7.2\%	$\mathrm{Z}=3.64 *, \mathrm{p}$ < 001

Current Smoking Prevalence Among Females, by FI Geı $:::::::$ Respondent's Demogr@ $\$ t a c^{c}$ acteristic@lalaysia

	IntervieweGender		Z-score, yalue
	Male	Female	
Age			
1824	0.8\%	0.5\%	$\mathrm{Z}=0.36 \mathrm{p}=.72$
2544	1.7\%	0.4\%	$\mathrm{Z}=1.66 \mathrm{p}=.10$
4564	0.8\%	0.2\%	$\mathrm{Z}=1.80 \mathrm{p}=.07$
65+	10.2\%	1.3\%	$\mathrm{Z}=2.24^{*}, \mathrm{p}<.05$
Residence			
Urban	1.5\%	0.3\%	$\mathrm{Z}=2.20$ *, p<. 05
Rural	2.1\%	0.7\%	$\mathrm{Z}=1.920=.06$
Education			
Primary or less	4.8\%	0.9\%	$\mathrm{Z}=2.67^{*}, \mathrm{p}<.01$
Secondary school	0.5\%	0.2\%	$\mathrm{Z}=0.92 \mathrm{p}=.36$
High school	2.2\%	0.0\%	$\mathrm{Z}=1.00 \mathrm{p}=.32$
Colleger above	0.0\%	0.0\%	-

Current Smoking Prevalence Among Females, by FI Geı $:::::::$ Respondent's Demogr@łtacacteristiçlietnam

	IntervieweGender		Zscore, palue
	Male	Female	
Age			
1824	0.6\%	0.0\%	$\mathrm{Z}=1.24 \mathrm{p}=.21$
2544	0.9\%	0.7\%	$\mathrm{Z}=0.45 \mathrm{p}=.65$
4564	2.9\%	2.8\%	$\mathrm{Z}=0.09 \mathrm{p}=.93$
65+	3.2\%	2.7\%	$\mathrm{Z}=0.29 \mathrm{p}=.77$
Residence			
Urban	1.1\%	0.7\%	$\mathrm{Z}=1.07 \mathrm{p}=.29$
Rural	1.7\%	1.7\%	$\mathrm{Z}=0.00 \mathrm{p}=1.00$
Education			
Primary or less	2.8\%	2.4\%	$\mathrm{Z}=0.43 \mathrm{p}=.67$
Secondary school	0.1\%	0.3\%	$\mathrm{Z}=0.82 \mathrm{p}=.41$
High school	0.0\%	0.4\%	$\mathrm{Z}=1.25 \mathrm{p}=.21$
Colleger above	0.3\%	0.6\%	$\mathrm{Z}=0.50 \mathrm{p}=.61$

Summary of Findings

- No significant differences among males in reporting smoking to male and female FIs
- Marginally nesignificant difference in Malaysia
- Significant differences among females in reporting sr to male and female Fls in two countries:
- Kazakhstan: Higher overall prevalence reported to female
- Malaysia: Higher overall prevalence reported to male Fls
- Significant differences among subgroups (for female
- China: 464 year olds, low education
- Kazakhstan: 25+, urban, higher education
- Malaysia: 65+, urban, low education
- No differences found among Vietnamese women

Discussion

- There was evidence of interviewer effects as fem respondents may have underreported their smok behavior in 2 out of 4 countries
- Underreportintey females magtentially lead underestimation of overall smoking/tabseco
- Accurately monitoring smoking among females is critical to effectively implement population based tobacco control strategies that lower tobacco

Implications for Future

- On a case-case basis, countries may want to consider usingre\$pondent gender matching fo validity concerns (not just cultural requirement
- May be a need to match opposite genders for fem
- Future research
- Subgroup analysis among males
- Analyze additional countries
- Explore possibility of rhertèl modeling to control for Fl effects (suggested by Davis et al. 2010)

Thank you for your time

Questions or further information?

Jeremy Morton jmorton@cdc.gov

*The findings and conclusions in this presentation are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

