
Estimating and Adjusting for Cross-
Cultural Differences in Acquiescent 
and Extreme Response Styles

Mingnan Liu
SurveyMonkey

Z. Tuba Suzer-Gurtekin
Sunghee Lee
University of Michigan

1



Outline

• Background
– Response styles

• Statistical models
– Regression analysis
– Confirmatory factor analysis (CFA)
– Latent Class Analysis (LCA)

• Conclusions

2



Background

• Response style describes the phenomenon that, 
rather than responding to the specific survey 
question, the respondent gives an answer that is 
based on some content irrelevant criteria 
(Paulhus 1991) 
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Statistical Modeling

• Regression analysis
• Confirmatory factor analysis (CFA)
• Latent class analysis (LCA)
• Multidimensional unfolding model (MUM)



Data and Measures

• 2012 American National Election Studies (ANES)
– Face-to-face and Web
– Sample size: face-to-face = 1929, web = 3581
– Response rate: face-to-face = 38%, web = 2% (AAPOR 

RR1)
– Re-interview rate: face-to-face = 94%, web = 93%
– Sampling

• Face-to-face: an address-based, stratified, multi-stage 
cluster sample

• Web: GfK KnowledgePanel, address-based sampling or 
random-digit dialing



Data and Measures

• Likert Scales
– 2 scales, 8 items

• Moral traditionalism (4) 
• Position of blacks in society (4) 

– 5-point 
• Disagree strongly (1)
• Disagree (2)
• Neither agree nor disagree (3)
• Agree (4)
• Agree strongly (5)



Regression Analysis
• Dependent Variables:

• Acquiescent Response Style (ARS)

• Extreme Response Style (ERS)

– where i indexes persons



Regression Analysis
• Ordinal rating items need to be as heterogeneous as 

possible (Baumgartner & Steenkamp, 2001, p. 200; Couch 
& Keniston, 1960; Greenleaf, 1992)

• Vague definition of heterogeneity
• Unknown required number of items to unconfound 

substantive responses from response styles 



Regression Analysis

• Models control for gender, age, education, household income, and 
response mode

• For ERS, 
– Comparing to non-Hispanic white, non-Hispanic black and 

Hispanic (both English and Spanish interviews) do not show a 
significant difference 

• For ARS, 
– Non-Hispanic blacks more likely to provide acquiescent 

answers comparing to non-Hispanic white
– No significant differences between Hispanic (both English and 

Spanish) and non-Hispanic white on ARS


		 

		ERS

		ARS



		 

		

		S.E.

		

		

		S.E.

		



		Non-Hispanic black

		-2.59

		1.58

		

		5.67

		1.34

		***



		Hispanic (English interview)

		-1.70

		2.13

		

		1.93

		1.50

		



		Hispanic (Spanish interview)

		-5.82

		3.25

		

		3.45

		3.57

		



		Non-Hispanic white

		(Reference)

		0.04









Confirmatory Factor Analysis (CFA)

• CFA model content variables and ARS variable as 
separate latent factors simultaneously in the 
same model
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Confirmatory Factor Analysis (CFA)



Confirmatory Factor Analysis (CFA)

• A Root Mean Square Error of Approximation (RMSEA) value 
smaller than 0.05 and its associated p-value close to 1 indicates 
good model fit. 

• a CFI close to 1 indicates good model fit. 
• All models have reasonable model fit.
• Model 1 has the worst model fit. 
• After adding ARS to the model, model fit improved

– Model 2: covariance between the content factors varies 
– Model 3, covariance between content factors and the ARS factor to be 0

• Model 4: factor loadings of ARS to be equal across all items (Billiet 
& Davidov, 2008; Billiet & McClendon, 2000)

Model Fit Statistics of Confirmatory Factor Analysis of ARS. 
 

  
RMSEA p<=.05 CFI 

# free 
parameters 

Model 1 content factors only 0.050 0.5040 0.897 65 
Model 2 content+ARS 0.027 1.0000 0.975 80 
Model 3 content+ARS, cov(content,ARS)=0 0.026 1.0000 0.976 79 

Model 4 
content+ARS, cov(content,ARS)=0, 
ARS equal loading 0.031 1.0000 0.966 78 

 


Model Fit Statistics of Confirmatory Factor Analysis of ARS.



		

		

		RMSEA

		p<=.05

		CFI

		# free parameters



		Model 1

		content factors only

		0.050

		0.5040

		0.897

		65



		Model 2

		content+ARS

		0.027

		1.0000

		0.975

		80



		Model 3

		content+ARS, cov(content,ARS)=0

		0.026

		1.0000

		0.976

		79



		Model 4

		content+ARS, cov(content,ARS)=0, ARS equal loading

		0.031

		1.0000

		0.966

		78









Confirmatory Factor Analysis (CFA)

Models control for gender, age, education, household 
income, and survey mode
Non-Hispanic and Hispanic (both English and Spanish 
interviews) both show stronger ARS than non-Hispanic 
white
Similar to regression analysis result, Non-Hispanic Blacks 
have a higher acquiescence in their responses


Estimated Regression Coefficients and Standard Errors of Race/Ethnicity and Control Variables on Acquiescent Response Style (ARS), 2012 American National Election Studies.



		

		

		S.E.

		



		Non-Hispanic black

		0.17

		0.03

		***



		Hispanic (English interview)

		0.13

		0.03

		***



		Hispanic (Spanish interview)

		0.25

		0.07

		**



		Non-Hispanic white

		(Reference)









Latent Class Analysis (LCA)
• ARS and ERS evaluated simultaneously
• The hybrid model contains 

– content-related 
– response style latent class variables 

• All modeled as discrete ordinal variables with equidistance 
between any two adjacent classes 

• The Likert items are treated as 
– ordinal variables when estimating the ARS latent class variable 

because 
• as the level of acquiescence increases the respondent is more 

likely to choose a response option closer to the positive end of the 
scale than the negative end. 

– nominal variables when estimating the ERS latent class 
variable because 

• respondents with higher levels of ERS are more likely to select the 
endpoints than the middle options 

• The nominal specification can capture the non-monotonic (U-
shape) of the ERS latent class variable



Latent Class Analysis (LCA)



Latent Class Analysis (LCA)


Model Fit Statistics, 2012 American National Election Studies.



		 

		BIC

		No. of parameters



		Model 1: Content only (2-class)

		104093

		69



		Model 2: Content+ERS (2-class)

		100179

		115



		Model 3: Consent+ARS (2-class)

		101264

		91



		Model 4: Content+ARS+ERS (2-class)

		98079

		137



		Model 5: Content+ARS+ERS (3-class)

		96874

		141



		Model 6: Content+ARS+ERS (4-class)

		96129

		145



		   Model 6a: Equality on all latent variables

		106823

		104



		   Model 6b: Equality on style latent variables

		96402

		110









Latent Class Analysis (LCA)

• Models control for gender, age, education, household income, and survey 
mode

• For ERS, 
– no significant race/ethnicity difference

• For ARS, 
– compare to white respondents, black respondents and Hispanic respondents 

interviewed in both English and Spanish show significantly more ARS


Estimated Regression Coefficients (Log Odds) and Standard Errors of Race/Ethnicity and Control Variables on Extreme Response Style (ERS) and Acquiescent Response Style (ARS), 2012 American National Election Studies.



		

		ERS

		ARS



		

		

		S.E.

		

		

		S.E.

		



		Non-Hispanic black

		-0.15

		0.44

		

		3.53

		0.60

		***



		Hispanic (English)

		0.66

		0.45

		

		3.32

		0.70

		***



		Hispanic (Spanish)

		1.09

		0.70

		

		5.47

		1.25

		***



		Non-Hispanic white

		(Reference)









Multidimensional unfolding model
（MUM）

• Cumulative model

• Unfolding model



Multidimensional unfolding model
（MUM）
• Cumulative model

– Disagreement increases as the underlying attitude
becomes displaced from the statement in the negative
direction and decreases as the underlying attitude
becomes displaced from the statement in the positive
direction.
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Multidimensional unfolding model
（MUM）
• Cumulative model

– Disagreement increases as the underlying attitude
becomes displaced from the statement in the negative
direction and decreases as the underlying attitude
becomes displaced from the statement in the positive
direction.
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Multidimensional unfolding model
（MUM）
• Cumulative model

– Disagreement increases as the underlying attitude
becomes displaced from the statement in the negative
direction and decreases as the underlying attitude
becomes displaced from the statement in the positive
direction.

• Unfolding model
– Disagreement increases as the individual’s attitude

becomes more distant in either direction from the
statement’s location on an attitude continuum.
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For example,

• A respondent may have a low score on the moral 
traditionalism continuum 
– and yet disagree that he should adjust his view of moral 

behavior to those changes since he/she does not 
necessarily believe in any kind of moral compass 

• At the same time, another respondent could 
score high on moral traditionalism 
– and still disagree with needing to adjust to those 

changes
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Multidimensional unfolding model
（MUM）
• Unfolding model can simultaneously model three

parts
– Latent structure model for ordinal variables  (Agresti, 

2002, pages 277-279; Javaras and Ripley, 2007), 
– Linear model that defines group memberships (Javaras 

and Ripley, 2007)
– Response threshold structure model (Javaras and Ripley, 

2007; Rossi et al., 2001). 



Multidimensional unfolding model
（MUM）
• MUM can estimate the ARS (shifting)  and ERS 

(scale)  parameters simultaneously
• Although model parameterization include other 

covariates to be included,  estimation code could 
only handle group of interest



Multidimensional unfolding model
（MUM）
• The overall goodness of fit statistics suggest that 

modelthat imposes group specific shifting and 
scaling parameters fits the data better

• Other groups (Hispanics and Non-Hispanic 
Blacks) have higher acquiescence and extremity 
in their responses than non-Hispanic white group



Multidimensional unfolding model
（MUM）

Response Style Group Shifting or 
Scaling 

Parameter 
(SE)

Acquiescence
Non-Hispanic white 0.00*
Non-Hispanic black 0.76 (0.07)
Hispanic (English interview) 0.71 (0.02)
Hispanic (Spanish interview) 0.71 (0.15)

Extreme Response Style
Non-Hispanic white -0.13*
Non-Hispanic black 0.08 (0.03)
Hispanic (English interview) 0.12 (NA)
Hispanic (Spanish interview) 0.13 (0.06)

MUM Estimates of Parameters and Variances of Interest, for the Response-style Parameters, 
2012 American National Election Studies
*Constrained for estimation 



Conclusion
• Different 

– Assumptions and data requirement
• Multi-item rating scales

– Balanced
– Heteregenoity

• MUM doesn’t include 
– controls
– weighting

• MUM and LCA model ARS and ERS simultaneously
– Interpretations

• MUM allows to estimate adjusted means
– Statistical packages different

• SAS
• R
• Mplus
• Latent Gold

• Different conclusion wrt ERS requires further investigation



Thank 
you!

Mingnan Liu
mingnanL@surveymonkey.com
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