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CONTEXT AND MOTIVATING CHALLENGES
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Qualitative and Quantitative Variation
• Survey and evaluation research require researchers to take into 

account the particulars of populations and phenomena studied

• In agricultural surveys, can often see qualitative variation in key measures 
across regions and countries, especially when subset on key groups

– Distribution of arable soil can impact crop yields and crop quality dramatically across study 
regions

• In longitudinal evaluation research, it is reasonable to expect that the 
intervention itself can alter both the qualitative and quantitative nature of the 
focal measures

– A business intervention which promotes shifting product mixes to enhance profitability could 
lead to temporary re-alignment of goods and services sold and a thus temporary or longer-term 
shifts in the distribution of sales / profits

– An intervention which promotes financial record keeping could lead to qualitative shifts in the 
distributions of reported income 
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Quantitative vs. Qualitative Variation
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Other Considerations
• When setting up (parameterizing) quantitative analyses, have to be 

careful to be context-sensitive and not impose prior conceptions on 
what population phenomena look like

• US overall income distribution (gamma-distributed) vs. income distribution 
among Sari-Sari store owners in the greater Manilla (Philippines) area                
(?-distributed)

– Estimating the distribution of Y could be an essential component of the study itself to 
the extent that it either provides a better sense of a novel or unfamiliar phenomena, 
informs subsequent design, or enables researchers to better incorporate information 
on the error distribution into subsequent analyses

• When designing studies which involve regionally-situated phenomena, have to 
recognize that “social” space and “social” geographies do not necessarily align 
with administrative space/geographies
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Common Tacts
• Conventional statistical analyses are parametric, require researchers 

to specify the distribution of the outcome Y
• Consequences of misspecification (bias, incorrect SEs / CIs, mis-interpretation of 

effects) can be substantial (e.g., Long, 1997), and not necessarily remedied by 
just “getting a larger sample”

• Common solutions: 
• Transform Y to better fit a conventional model (i.e.,  ln(Y), Y-1)
• GLMs (McCullagh and Nelder, 1989) to model Y on it’s native scale, obtain 

correct SEs, reasonable-to-interpret effects (i.e., gamma regression, negative 
binomial regression, etc.)

– However, as with transformations, GLMs not allow differential-modeling of Y 
distributions (can’t transform some groups but not others)
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QUANTILE REGRESSION AND BAYESIAN 
QUANTILE REGRESSION
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Quantile Regression
• Quantile regression (QR) offers a reasonable and highly flexible 

(more comprehensive) alternative to GLMs in many scenarios (Davino
et al., 2014; Koenker, 2005)

• GLMs:  model conditional mean
• QR:  models conditional quantiles (median, 75th percentile, etc.)

• OLS vs. QR loss functions
• OLS: µ = argminc E[Y-c]2

• QR for Me: Me = argminc E|Y-c| 

• QR for general quantile θ = P(Y ≤ y): qθ = argminc E|ρθ(Y-c)|

ρθ = [(1-θ) I(y≤ 0)] + θ I(y>0)] |y|

• QR conditional on X for quantile θ: b(θ) = argminb E|ρθ(Y-Xb)|

The ρ are often referred to as weights, which are 
defined by a check function
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Quantile Regression - II
• In the contexts described above, QR can be particularly attractive 

option (Davino et al., 2014; Koenker, 2005; McMillen, 2013)

• Inferences about Y | X relationships are distribution free:  method makes no 
assumption about the distribution of Y

–Put differently, QR makes no assumptions about the error distribution for Y, 
and is thus robust to model misspecification (QR can in fact be used to 
estimate the distribution of Y | X)

• QR readily amenable to estimating percentile intervals in the data (i.e., “80% of 
white male respondents with 16 years of education have incomes within the 
range YL – YU”)

–Potentially useful property for clients who seek an alternate way of 
understanding where substantively meaningful slices of the population fall

–Relatedly, QR is amenable to threshold analyses
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Going Bayesian
• Classical QR is not new per se; Bayesian QR is (relatively)
• In general, Bayesian methods allow researchers to model not just 

response Y, but also regression coefficients (Carlin and Louis, 2009):

Yij = β0j + β1jXi + e

β0j = γ00 + µ0j

β1j = γ10 + µ1j

• Treating Y and βp as explicit random variables has numerous advantages in 
research where contexts (geographic, social) are important (Gelman and Hill, 2006)

• βp can vary across aggregations (such as regions or socio-political entities) in a way that 
adjusts for (allows evaluation of) contextual / cluster differences (Raudenbush and Bryk, 2001)

– Example from education research:  what are the characteristics of schools which have lower 
black/white test score differentials?  How are school means correlated with black/white 
differentials?
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Going Bayesian - II
• Bayesian paradigm provides principled mechanisms for 

incorporating results from previous studies or data collection 
efforts into analysis 

– Elicited priors (Gill and Walker, 2005; see also Rendell et al., 2009)

– Bayesian updating for longitudinal studies (Carlin and Louis, 2009)

– WIPs to stabilize estimation (Chung et al., 2015; Gelman et al., 2008)

• Suggests that payoffs to integrating Bayesian methods with QR 
approach could be substantial …
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Bayesian Quantile Regression
• Bayesan quantile regression (BQR) attempts to achieve the same 

flexibility that HLMs / HGLMs enjoy – specification of priors for 
model coefficients, contextualizing models via random effects
• Also, robustify quantile-specific estimates with small samples

• Bayesian extensions of QR have a couple of different flavors:
• Associated likelihood is approximate and there are a handful of different ways 

to parameterize (e.g., Feng, 2015; Yang and He, 2012; Yu et al., 2001), some of 
which are slightly more robust than others in certain contexts

–And not all of which allow joint estimation of quantiles…

• Still, another payoff of to Bayesifying QR is that can potentially 
integrate Bayesian approaches to incorporating sample design 
information  (Gelman et al., 2013; Si et al., 2015)
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ILLUSTRATION
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Simulation
• Data were generated from three different population distributions, 

N=10,000
–Normal(0,25)
–Gamma(10,5)
–Chi Squared(125)

• A relationship with the response variable was applied (Y|X), and the 
data were combined to form a dependent variable with a single 
continuous independent variable

• Sample draws made of n=150 per distribution

• The error is heterosckedastic, non-normal, and differing 
distributions across the values of the independent variable
• In other words, a worst case scenario for performing OLS
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The Density of the Response
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Best-Fit Lines (OLS, BQR with plat prior)
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Why BQR vs. OLS?
• The OLS line and the median regression line are very close, in spite 

of the asymmetry of Y … so why use quantile regression?

• It is impossible to get accurate estimates of the standard error for the OLS 
slope without a significant increase in the complexity of the model (and 
would model interpretability be compromised?)

– I.e., even though the β estimates are aligned (parametric vs. nonparametric), SEs for 
the OLS line are incorrect because the distribution of Y is not correctly specified (QR 
does not depend upon proper specification of Y, and so SEs are more robust)

• We can reliably understand the spread of the response with quantile 
regression because the distance between quantile lines is a measure of 
spread, e.g. interquartile range, θ differences, etc.

• In this case, flat prior means that BQR result is same as QR result
– Subsequent analyses show greater stability in upper/lower quantiles if alter 

informativeness
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Actual Agricultural Example: Density of Y
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Best-Fit Lines (OLS, BQR), Untrimmed Y
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CONCLUSIONS AND NEXT STEPS
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Concluding Thoughts
• QR is well-suited to a number of problems that arise in comparative 

survey research

• BQR extensions have potential to allow flexible incorporation of survey 
information

• Additional simulations show that QR/BQR is reasonably robust to 
common model misspecifications

• Error, X correlation, failure to include true region information

• In spite of this, full BQR is not as plug-and-play as, say, HLM

• Conscientious implementation requires careful consideration of approximated 
likelihood, and reflection on prior (basic eBayes not as intuitive)
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